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We examine the quantum phase diagram of the fractional quantum Hall effect �FQHE� in the lowest two
Landau levels in half-filled bilayer structures as a function of tunneling strength and layer separation, i.e., we
revisit the lowest Landau-level filling factor 1/2 bilayer problem and make predictions involving bilayers in the
half-filled second Landau level �i.e., filling factor 5/2�. Using numerical exact diagonalization we investigate
the important question of whether this system supports a FQHE described by the non-Abelian Moore-Read
Pfaffian state in the strong-tunneling regime. In the lowest Landau level, we find that although, in principle,
increasing �decreasing� tunneling strength �layer separation� could lead to a transition from the Abelian two-
component Halperin 331 to non-Abelian one-component Moore-Read Pfaffian state, the FQHE excitation gap
is relatively small in the lowest Landau level Pfaffian regime, and we establish that all so far observed FQHE
states in half-filled lowest Landau level bilayers are most likely described by the Abelian Halperin 331 state. In
the second Landau level we make the prediction that bilayer structures would manifest two distinct branches of
incompressible FQHE corresponding to the Abelian 331 state �at moderate to low tunneling and large layer
separation� and the non-Abelian Moore-Read Pfaffian state �at large tunneling and small layer separation�. The
observation of these two FQHE branches and the possible quantum phase transition between them will be
compelling evidence supporting the existence of the non-Abelian Moore-Read Pfaffian state in the second
Landau level. We discuss our results in the context of existing experiments and theoretical works.
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I. INTRODUCTION

Two important developments have rekindled interest in
the phenomena of even-denominator incompressible frac-
tional quantum Hall states in two-dimensional �2D� high-
mobility bilayer semiconductor structures. The first is the
recent intriguing experimental observation by Luhman et al.1

of two distinct even-denominator fractional quantum Hall
effect �FQHE� states at filling factors �=1 /2 and 1/4 in a
very wide ��600 Å� single-quantum-well �wide-quantum-
well� structure at very high ��40 T� magnetic fields. The
second development, motivated by implications for fault-
tolerant topological quantum computation,2,3 is the great deal
of recent theoretical and experimental interest in the possible
non-Abelian nature of the �=5 /2 second Landau-level �SLL�
FQHE state first observed by Willett et al.4 in the single-
layer system in 1987 with subsequent confirming
observations5–11 over the years since. The FQHE at filling
factor �=5 /2 presents an amazing confluence of ideas from
condensed-matter physics, conformal field theory, topology,
and quantum computation.3 In particular, the fundamental
nature of the experimentally observed 5/2 FQHE, whether an
exotic spin-polarized non-Abelian incompressible paired
state or a more common Abelian incompressible paired state,
has remained an enigma for more than 20 years. Although
theoretical and numerical work indicates that the 5/2 FQHE
belongs to a non-Abelian Moore-Read Pfaffian �Pf� �Ref. 12�
universality class, there is scant experimental evidence sup-
porting this conclusion13 �see Ref. 3 for a comprehensive
review of non-Abelian physics and topological quantum
computation�.

These two developments lead to important and interesting
questions. One question is whether a non-Abelian �=1 /2

FQHE, i.e., the analog of the possibly non-Abelian �=5 /2
=2+1 /2 SLL single-layer state,14 can exist in the lowest LL
�LLL� under experimentally observable conditions. This
question has a long history15–18 in the theoretical literature
going back to the early 1990s and recent FQHE experiments
at �=1 /2 make it imperative that a theoretical analysis be
carried out to achieve a proper qualitative understanding of
current experiments.1,19

Another important question concerns the non-Abelian-
ness �or not� of the experimental 5/2 state which is of pro-
found importance beyond quantum Hall physics.2,3 Hence, it
is useful to contemplate novel situations where the nature of
the 5/2 state will manifest itself in a dramatic, but hitherto
unexplored, manner. The current work addresses the di-
chotomy �i.e., the 1/2 FQHE being an Abelian Halperin 331
bilayer state20 versus the 5/2 FQHE being a non-Abelian
Moore-Read Pfaffian12,21 single-layer state� between single-
layer SLL physics versus bilayer LLL physics by studying
the bilayer FQHE in both the lowest and second LLs as a
function of layer separation and tunneling. We ask whether
bilayers can support both Pf and 331 FQHE.

The proposed non-Abelian Moore-Read Pf state is a
weak-pairing single-layer �or one-component� FQHE state
for half-filled LLs which, in principle, applies to any orbital
LL �i.e., LLL as well as SLL�. Thus, as a matter of principle
a �=1 /2 LLL single-layer Pf FQHE is certainly a
possibility16–18,22–24 although it has never been observed ex-
perimentally. Theoretically, due to the differences in the
electron-electron Coulomb interaction pseudopotentials in
the LLL compared to the SLL the two situations �i.e., 1/2 and
5/2� are quantitatively very different, and it is possible for
the Pf FQHE to exist in the SLL, but not in the LLL �and
vice versa�. The best existing numerical work22,23,25,26 indi-
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cates that either the single-layer �=1 /2 LLL Pf state does
not exist in nature or if it exists, does so only in rather thick
2D layers with an extremely small FQHE excitation gap,
making it impossible or very difficult to observe experimen-
tally. By contrast, the single-layer �=5 /2 SLL FQHE is ob-
served routinely, albeit at low temperatures ��100 mK�, in
high mobility ��107 cm2 /V s� samples, and with a rather
small �but experimentally accessible� activation gap
��100–500 mK�. In fact, it has been pointed out that the
experimental �=5 /2 FQHE is always among the strongest
observed FQHE states in the SLL.

Instead of studying a single-layer 2D system, we concen-
trate on the spin-polarized and density-balanced bilayer sys-
tem assuming an arbitrary tunneling strength t and an arbi-
trary layer separation d in the lowest and second LLs. We
confine our study to spin-polarized systems because all ex-
perimentally realized half-filled FQHE states appear to be
fully spin polarized, consistent with the theoretical
expectation,27,28 whether bilayer two-component FQHE
states at �=1 /2 or one-component single-layer FQHE states
at �=5 /2. By density “balanced” we mean that each layer in
the bilayer system has the same number of electrons. Fur-
thermore, it should be noted that the tunneling strength t is
proportional to the symmetric-antisymmetric �SAS� energy
gap. The experimentally realizable system we have in mind
could either be a true bilayer double-quantum-well structure
or a single wide-quantum well �WQW� which manifests ef-
fective bilayer behavior where the self-consistent field from
the electrons produces effective two-component behavior1,19

�see Fig. 18 in Appendix�.
We numerically obtain the approximate quantum phase

diagram �QPD� for a 1/2-filled bilayer system in either the
lowest or second Landau level in the t-d space using the
spherical system finite-size exact-diagonalization �Lanczos�
technique, concentrating entirely on the Pf and the 331
FQHE phases. For the LLL, we revisit the �=1 /2 bilayer
FQHE and carry out an extensive comparison with all exist-
ing bilayer �=1 /2 FQHE experimental observations to as-
certain any hint of the existence of a non-Abelian Moore-
Read Pfaffian state for large values of t. No strictly single-
layer system, e.g., a heterostructure or a not-too-thick
quantum well, has ever demonstrated an incompressible
FQHE at �=1 /2, instead manifesting only the compressible
composite fermion29,30 Fermi sea.31,32 It is intuitive that our
model system is an effective bilayer, or single-layer, �=1 /2
system for small, or large, values of t, and therefore by
studying the quantum phase diagram as a function of t and d
we hope to shed light on the possible existence of a single-
layer �=1 /2 FQHE in real systems.

One of the results of the current work is that for the low-
est Landau-level bilayer FQHE system, �i� the recently ob-
served WQW �=1 /2 FQHEs �Refs. 1 and 19� are strong-
pairing Abelian Halperin 331 FQHE states20,33 which,
however, sit close to the boundary between the Abelian 331
and the weak-pairing non-Abelian Pfaffian FQHE state,12

and �ii� it may be conceivable, as a matter of principle, to
realize the LLL �=1 /2 Pfaffian non-Abelian FQHE in very
thick bilayers, but as a matter of practice, this is unlikely
since the �=1 /2 FQHE gap is extremely small �perhaps
zero� in the parameter regime where the Pf is more stable

than the 331 phase. Our findings about the fragility of the
LLL �=1 /2 non-Abelian Pf state are consistent with recent
conclusions,22,23,25,26 but our main focus in the current work
is in understanding the �=1 /2 bilayer quantum phase dia-
gram treating tunneling t, layer separation d, and individual
layer width w of the 2D system as independent tuning pa-
rameters of the Hamiltonian.

For the second Landau level, we predict that bilayers can
support both the non-Abelian Moore-Read Pfaffian and the
Halperin Abelian 331 FQHE and that there could be a novel
quantum phase transition �QPT�, both as a function of tun-
neling strength �at constant layer separation� and of layer
separation �at constant tunneling�, between the two-
component 331 Abelian and the one-component Pf non-
Abelian states in a bilayer SLL system. We show that tuning
the interlayer tunneling and/or layer separation would lead to
a transition between the Abelian and the non-Abelian SLL
FQHE, which should be observable experimentally in stan-
dard FQHE transport experiments. In particular, we predict
that in realistic systems with finite single-layer width, the
SLL bilayer state would manifest two distinct FQHE phases
separated by a region of finite interlayer separation and tun-
neling. Existence of two distinct incompressible FQHE bi-
layer states at total filling factor �=5 /2, connected possibly
by a quantum phase transition, is a clear �experimentally
testable� prediction of our theory. The observation of such a
quantum phase transition, originally predicted as possible by
Read and Green34 �Fig. 1 in Ref. 34� under general theoret-
ical considerations �but never before demonstrated to be fea-
sible under realistic conditions�, would strongly suggest the
existence of a non-Abelian 5/2 state since the two distinct
FQHE phases in the same sample both cannot conceivably
be Abelian 331 states.

We first present a background for our work in Sec. II and
then describe our theoretical model in terms of a Hamil-
tonian and introduce all relevant parameters in Sec. III. Next
we revisit the lowest Landau-level problem in Sec. IV before
tackling the second Landau-level problem in Sec. V, since
the LLL problem, due to its long history, is easier to under-
stand and will provide a proper context and atmosphere
when discussing our SLL results. In Sec. IV C we discuss in
detail how we connect our results with current and previous
experimental FQHE bilayer LLL results. Furthermore, in
Sec. V D we discuss am important issue regarding bilayer
FQHE systems in higher Landau levels, a difficulty or ambi-
guity that is quite subtle and has not been discussed previ-
ously as far as we know. Lastly we present our conclusions
in Sec. VI.

II. BACKGROUND

Before describing and presenting our work, it is useful to
provide a brief background of bilayer FQHE, a subject with
a long history, in order to set a context for our work. The two
candidate wave functions we consider and compare in this
work, with respect to �=1 /2 and 5/2 bilayer incompressible
states, the Halperin 331 state20,33 and the Moore-Read Pfaff-
ian state12 were proposed in 1983 and 1991, respectively.
The 331 wave function is a two-component strongly paired
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Abelian state of two Laughlin35 phases in each layer whereas
the Pfaffian is a one-component weak-pairing non-Abelian
superconducting state of chiral p-wave symmetry. Both of
these states are allowed incompressible FQH phases at half-
filled Landau levels which for our purpose could be either
�=1 /2 or 5 /2�=2+1 /2�. The qualitative difference between
these two incompressible FQH states is that the 331 is an
Abelian two-component state whereas the Pfaffian is a non-
Abelian one-component state.

It was first explicitly shown by Yoshioka et al.,36,37 that a
bilayer system at �total� half filling could support a 331 in-
compressible state for a layer separation d� l �where l is a
characteristic length scale called the magnetic length, defined
below�, i.e., when intralayer and interlayer correlations are
comparable. Later, He et al.15,17 carried out a detailed quan-
titative analysis of the possible existence of 331 FQHE in
�=1 /2 bilayer structures, making specific predictions for
layer separation �d� and layer width �w� values where experi-
mentally observable incompressible states may exist. This
lead to the observation of �=1 /2 bilayer 331 FQHE by
Eisenstein et al.38 Parallel to the Eisenstein et al. observation
of the 331 FQHE in bilayers, Shayegan et al.39,40 observed a
well-defined �=1 /2 FQHE in wide quantum wells. This
WQW observation of �=1 /2 FQHE was at first attributed to
the one-component Moore-Read Pfaffian state by Greiter et
al.,16 who argued that the occurrence of a �=1 /2 FQHE in a
single-quantum well, rather than in double-quantum wells,
implies a one-component rather than two-component nature
of the underlying incompressible state. Later theoretical
work by He et al.17 and further experimental work by Shaye-
gan et al.40,41 decisively established that the wide-well �
=1 /2 FQHE is, in fact, a manifestation of the two-
component 331 rather than the one-component Pfaffian state.
The existence of a two-component 331 FQHE in wide single
wells becomes possible by virtue of the self-consistent Har-
tree electric field arising from the electrons themselves
which, for sufficiently large quantum well width �W� and
carrier density �n�, could lead to the single wide quantum
well acting effectively as two distinct electron layers local-
ized near the well boundaries �with density n /2 each� with a
potential barrier separating them in the middle. Such a two-
component 331 FQHE description of observed �=1 /2 in-
compressibility has become well accepted and the fact that
no �=1 /2 FQHE has ever been observed in relatively thin
single-quantum-well structures or in single heterostructures
has further reinforced the idea that the �=1 /2 FQHE is due
to the formation of the two-component Halperin 331 state in
wide quantum wells.42

From the perspective of �=1 /2 FQHE, wide quantum
wells should be considered as two-component bilayer sys-
tems with nonzero interlayer tunneling. For relatively weak,
or strong, tunneling between the layers, the system behaves
as a two, or one, component system, and the question of the
existence of Abelian 331 or non-Abelian Pfaffian �=1 /2
FQHE then, in some sense, boils down to the existence of
incompressible FQHE in the weak or strong-tunneling limit.
Unfortunately, how strong an interlayer tunneling is strong
enough to render the system into a one-component Pfaffian
FQHE is a quantitative question, which can only be ad-
dressed through detailed numerical study. Such a numerical

study is the main goal of this paper. In the process, we also
ask the question of one-component versus two-component
�i.e., Pfaffian versus 331� FQHE in bilayer �=5 /2 case,
where the existence of the one-component Pfaffian �=5 /2
FQHE is reasonably well-established theoretically,25,27,43–48

although actively debated.49–51 The bilayer �=5 /2 case was
never studied before in the literature whereas there were only
two studies of the bilayer �=1 /2 case comparing 331 versus
Pfaffian state. The first is by He et al.17 and the second is by
Nomura and Yoshioka.18 Our work for �=5 /2 is distinct, and
our work for �=1 /2 transcends that of the earlier work in
being much more complete. Very recently, Papić et al.23 in-
vestigated this problem using a somewhat different model.

As mentioned in Sec. I �Introduction�, our work is par-
tially motivated by the recent experimental observation of
Luhman et al.1 who found a �=1 /2 FQHE in side single
wells with relatively strong tunneling �i.e., large symmetric-
antisymmetric energy splitting�. An interesting question is
whether the �=1 /2 FQHE observed in the Luhman et al.
experiment is a two-component 331 state or a one-
component Pfaffian state. We do not study the �=1 /4 FQHE
observed by Luhman et al. which has recently been dis-
cussed by Papić et al.23

We mention that all our theoretical work assumes com-
plete spin polarization of the electrons and considers only the
balanced case where the average electron density is the same
in each layer. We also neglect all Landau-level coupling ef-
fects, and as such our work does not distinguish between the
non-Abelian Pfaffian and the non-Abelian anti-Pfaffian52–55

states at �=1 /2 or 5/2. �Note that the neglect of LL mixing
effects may not be a particularly good assumption for the 5/2
FQHE.13,56� The reason for our considering full spin polar-
ization is that prior theoretical work by Morf27 and by
Feiguin et al.28 indicates that the �=1 /2 or 5/2 state is likely
to be fully spin polarized. If the bilayer incompressible states
turn our to be unpolarized or partially polarized, our work
simply would not be valid.

With this background, we study the stability of the 331
and the Pfaffian state in �=1 /2 and 5/2 bilayers in the pres-
ence of finite interlayer tunneling �t�, interlayer separation
�d�, and layer width �w�. Our goal is to obtain an appropriate
zeroth-order quantum phase diagram in the t-d-w space for
�=1 /2 and 5/2 bilayer FQHE. Given that we calculate and
compare the exact many-body ground state for many indi-
vidual values of t, d, and w, we are forced to use a rather
modest system size for N=8 electrons �i.e., four in each
layer� in all our exact-diagonalization work. Past experience
shows that a 8-electron system is quit adequate for qualita-
tive understanding as long as precise thermodynamic values
of excitation gap or ground-state energy are not desired.

III. THEORETICAL MODEL

We use the simplest model Hamiltonian Ĥ incorporating
both finite tunneling t and finite layer separation d �as well as
finite layer width w, or finite thickness� for our bilayer FQHE
system,
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Ĥ = �
i�j

N

�Vintra��ri − r j�� + Vintra��r̃i − r̃ j��

+ Vinter��ri − r̃ j��� − t�Ŝx�layer, �1�

ri and r̃i are the position of the ith electron in the right and
left layer, respectively. In Eq. �1�, Vintra�r�=e2 / ���r2+w2�
�we use the Zhang-Das Sarma �ZDS� �Ref. 57� potential to
model the single-layer quasi-2D interaction� and Vinter�r�
=e2 / ���r2+d2� are the intralayer and interlayer Coulomb in-
teraction incorporating a finite layer width w and a center-to-
center interlayer separation d ��w by definition�. The x com-

ponent of the pseudospin operator �Ŝx�layer �written in the
layer basis representation� controls the tunneling between the
two quantum wells with large t denoting strong tunneling.

Note that in the bilayer problem when the electron density
is balanced in each layer, i.e., total number of particles in
each layer is N /2, there are essentially two natural Hilbert
space representations. The layer basis �in which Eq. �1� is
written� or the symmetric-antisymmetric basis where cmS
= �cmR+cmL� /�2 and cmA= �cmR−cmL� /�2 destroy an electron
in the symmetric �S� and antisymmetric �A� superposition
states, respectively, where m is angular momentum and cmR
and cmL destroy an electron in the right and left quantum
well, respectively. S�A� can be considered to be an effective
pseudospin index for the bilayer system. In the symmetric-
antisymmetric basis, the Hamiltonian is written as

Ĥ =
1

2 �
	mi,�i=A,S


�m1�1,m2�2�V�m4�4,m3�3�

	cm1�1

† cm2�2

† cm4�4
cm3�3

−
t

2�
m

�cmS
† cmS − cmA

† cmA� .

�2�

As written above in Eq. �1�, the intralayer Coulomb potential
energy between two electrons is V=Vintra and the interlayer
potential energy is V=Vinter. A difference between the two
representations is that the tunneling operator in the layer ba-

sis can be written as �Ŝx�layer while, in the symmetric-

antisymmetric basis, the tunneling operator is �Ŝz�SAS

= 1
2�m�cmS

† cmS − cmA
† cmA� = 1

2�m�cmR
† cmL + cmL

† cmR� = �Ŝx�layer.
The layer and symmetric-antisymmetric bases are related
through a pseudospin rotation. Of course, the choice is a
matter of personal taste and convenience and one should re-
ally appeal to a physical explanation to understand the tun-
neling: no matter the basis choice, the tunneling term con-
trols the probability that electrons jump back and forth
between the two layers keeping the total number of electrons
in each layer fixed at N /2, i.e., keeping the bilayer system
density balanced.

We numerically diagonalize Ĥ for finite N assuming spe-
cific values of w, d, and t �each expressed throughout in
dimensionless units using the magnetic length l= �c
 /eB�1/2

as the length unit and the Coulomb energy e2 / ��l�, where �
is the background dielectric constant of the host semiconduc-
tor, as the energy unit; e is electron charge, c is the speed of

light in vacuum, and B is the magnetic field strength�. We
utilize the spherical geometry where the electrons are con-
fined to a spherical surface of radius R=�N� /2, N� is the
total magnetic flux piercing the surface �N� is an integer
according to Dirac�, and the filling factor in the partially
occupied Landau level �whether LLL or SLL� is
limN→� N /N�. To fully consider tunneling, the Hilbert space

must contain basis states with Ñ and N− Ñ electrons in the

right and left layers for Ñ� �0,N�.
Following the standard well-tested

procedures15–18,22,23,25,26 used extensively in the FQHE litera-
ture, we calculate the overlap between the exact numerical N
electron ground-state wave function of the Coulomb Hamil-
tonian defined by Eq. �1� and the candidate N electron varia-
tional states which are the Abelian Halperin 331
strong-pairing20 and the non-Abelian Moore-Read Pfaffian
weak-pairing12 wave functions,


331 = 

i�j

N/2

�zi − zj�3

i�j

N/2

�z̃i − z̃ j�3

i,j

N

�zi − z̃ j� , �3�


Pf = Pf� 1

zi − zj
�


i�j

N

�zi − zj�2, �4�

respectively, where z=x− iy is the electron coordinate in the
x-y plane. Intuitively, the “331” in 
331 originates from the
exponents for �zi−zj�, �z̃i− z̃ j�, and �zi− z̃ j�, respectively, i.e.,
3, 3, and 1. �Note that other Halperin 331-type wave
functions58,59 have been considered for other filling factors,
e.g., total �=1, and recently the total �=5 /2+5 /2=5 bilayer
FQHE has been considered60, however, none of these states
directly apply to the situation that we are investigating of a
half-filled LLL or SLL.� Both 
331 and 
Pf are written
above in the layer representation, where the 331 state pairs
electrons between layers and 
Pf pairs electrons in a single
layer, since writing the wave functions in real space and
appealing to the layer basis representation is much more in-
tuitive. However, we are working within the balanced den-
sity situation so the Pf wave function, in particular, should be
thought of as a wave function that describes pairing among
electrons in the symmetric state ��cmR+cmL� /�2� since the
electrons are never physically completely in a single layer,
right or left.

We emphasize that we only consider the above two can-
didate wave functions. It is well known31,32 that a composite
fermion liquid phase �or composite fermion Fermi sea� exists
for �=1 /2 one-component systems both from extensive the-
oretical analysis and experimental observations.30 On the
other hand, it is strongly suspected that for one-component
systems at �=5 /2, the ground state is the Moore-Read Pfaff-
ian phase. Again, this is known from theoretical and experi-
mental works.22,27,43,45,47,48 There are other candidate wave
functions that can be written down besides 
331 and 
Pf.
Namely, one could consider 
222 and 
440 �both obvious
generalizations of naming convention used for 
331� that de-
scribe a pseudospin unpolarized composite fermion Fermi
sea and two uncorrelated one-quarter-filled composite fer-
mion Fermi seas, respectively.30 However, those states have
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different “shifts” �see below� in the spherical geometry than
one another and 
331 and 
Pf and cannot be compared on an
equal footing61 and comparing them each to the exact state

0 would require many additional calculations that are sim-
ply beyond the scope of this work.

After diagonalizing Ĥ we ensure that �i� the ground state
is homogeneous, i.e., has total orbital angular momentum L
=0 and is therefore an incompressible state, and �ii� there is
a gap, the FQHE excitation gap, separating the ground state
from all excited states. We are concerned with the Pf and 331
variational states for total filling factor 1/2 in either the low-
est or second Landau level, so N�=2N−3, the “−3” is known
as the “shift” and is a consequence of the curvature of the
spherical geometry in which we work. Throughout, we con-
sider �N ,N��= �8,13� and mention that due to the pseudospin
component present in the bilayer problem the Hilbert space
is large �more than 105 states for N=8 and over 7	106 for
N=10�. Usually when one is utilizing exact diagonalization
one wishes to consider many different system sizes and ex-
trapolate the finite-size results to the infinite system size
through some sort of finite-size scaling. The computational
difficulty of our problem does not allow this. N=6 electrons
at N�=2N−3 is aliased with a one-component FQHE corre-
sponding to �=2 /3, remember the filling factor �
=limN→� N /N�, so for certain combinations of N and N�

there can be correspondence between the finite systems and
two distinct filling factors �the so-called aliasing problem�.
Hence, the N=6 case will produce ambiguous results �and, in
fact, this aspect raises some questions about the work of
Nomura and Yoshioka18 who used N=6 to do a similar in-
vestigation for �=1 /2 bilayers�. N=10 is too big for us to
exactly diagonalize �mentioned above� so we are left with
only being able to consider N=8 and no finite-size scaling is
possible. Although this is a drawback, it is not uncommon in
theoretical FQHE studies to use a modest system size, but
many different sets of physical parameters �i.e., t, d, w for
our case� to bring out qualitative features. Furthermore, since
the theoretical techniques are standard, we do not give the
details, concentrating instead on the results and their impli-
cations for bilayer FQHE experiments.

We investigate this system with the usual probes used in
theoretical FQHE studies by calculating: �i� wave-function
overlap between variational ansatz �
Pf and 
331 states� and

the exact ground state 
0 of Ĥ, an overlap of unity or zero
indicates that the physics is or is not described by the ansatz;
�ii� expectation value of the exact ground state of �NS
−NA� /2, where NS and NA are the expectation values of the
number of electrons in the symmetric or the antisymmetric
states, respectively, a value of zero or N /2 indicating the
ground state to be two or one component; and �iii� energy
gap �provided the ground state is a uniform state with L=0�,
a nonzero excitation gap indicating a possible FQHE state. In
other words, we ask: �i� what is the physics �i.e., 331 or Pf�?;
�ii� is the system one or two component?; �iii� will the sys-
tem display FQHE �i.e., is the system compressible or in-
compressible�?

The calculated overlap and gap determine the nature of
the FQHE and its strength in our theory. We operationally
define the system to be in the 331 or Pf phase depending on

whether the overlap between the exact ground state and the
331 or Pf wave functions is larger, i.e., if �
0 �
331�
� �
0 �
Pf� then the system is said to be in the 331 phase
and vice versa. We emphasize that our work is a comparison
between these two incompressible states only and we cannot
comment on the possibility of some other state �i.e., neither
331 nor Pf� being the ground state. We do, however, believe
that if the system is incompressible at a particular set of
parameter values �i.e., d, t, w, etc.�, it is very likely to be
described by one of these two candidate states, 331 or Pf. We
cannot, however, rule out the possibility that the real system
has a compressible ground state �without manifesting
FQHE�, e.g., a composite fermion Fermi sea, not considered
in our calculation. This is more likely to happen when our
calculated excitation gap is very small.

IV. LOWEST LANDAU-LEVEL RESULTS

A. What is the physics?, lowest Landau level

The calculated wave-function overlap between the exact
ground state 
0 and the two appropriate candidate varia-
tional wave functions �
Pf and 
331� as a function of dis-
tance d and tunneling energy t is shown in Fig. 1. First we
focus on the situation with zero width w=0 �Fig. 1�a�� and
concentrate on the overlap with 
Pf. In the limit of zero
tunneling and zero separation, the overlap with 
Pf is zero
and quickly jumps to approximately 0.9 when the tunneling
is increased to only a small amount of approximately 0.025,
and for increasing tunneling, �
0 �
Pf� remains relatively
constant. In fact, this zero d and large tunneling result should
be compared to the single-layer results we have given earlier
�Fig. 9�a� in Ref. 25�. For d�0, in the weak-tunneling limit
the overlap with 
Pf remains very small. However, in the
large-tunneling limit, increasing d only reduces the overlap
marginally and the Pf description remains quite good even
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FIG. 1. �Color online� Wave-function overlap between the exact
ground state, 
0, and the Pf state, 
Pf �blue �dark gray��, and 331
state, 
331 �yellow �light gray��, as a function of layer separation d
and tunneling amplitude t for the �=1 /2 lowest LL with N=8 elec-
trons and single-layer width �a� w=0, �b� w=0.6, �c� w=1.2, and �d�
w=2.4 �d�w necessarily�.
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for large d. This shows that the strong-tunneling �one-
component� regime is well described by the Pf state. It
should be noted, however, that the overlap between 
0 and

Pf is never much above 0.9, this should be compared to the
SLL where we know22,25,27,43,45,47,48 that the Pf wave function
is a good physical description in the small layer separation
and large tunneling limit �see Sec. V A�.

Next we consider the overlap between 
0 and 
331. In
the zero tunneling limit, as a function of d, we find the over-
lap starts very small, increases to a moderate maximum of
�0.80 at d�1 before achieving an essentially constant value
of �0.6. For d�4 the overlap increases with increasing tun-
neling to a maximum of nearly 0.8. Thus, the weak-tunneling
�two-component� regime is well described by 
331 and the
331 state is very robust to tunneling when layer separation is
large. For small layer separation �d�2�, nonzero tunneling
very quickly suppresses the overlap between 
331 and the
exact state to a very small value.

We know from earlier work25,47 that finite layer width
within a single-quantum well, at least in the large tunneling
and small layer separation limit, i.e., the one-component
limit, may enhance the overlap between 
0 and 
Pf. In Figs.
2�a� and 2�b� we show �
0 �
331� and �
0 �
Pf�, respec-
tively, versus layer separation d and single-layer width w for
small tunneling t=0 and large tunneling t=0.2. For the small
tunneling situation where 331 is a good ansatz, we see
clearly that for w=0 the overlap is maximum for a finite
value of d�2. However, for finite w we find that the position
of maximum overlap does not change much and, in fact, for
large w the maximum overlap obtains essentially for the w
�d condition.

In the case of 
Pf �Fig. 2�b�� we find a result similar to
the single-layer finite-thickness results �cf. Ref. 25� where
the overlap with the exact state is nearly constant for increas-
ing w and d. For w=d we expect this behavior but it is
interesting to note how robust the overlap is for finite w and
large d.

In Figs. 1�b�–1�d� we consider the overlap between the
exact state and the 331 and Pf states as function of separation
and tunneling for finite layer widths of w=0.6, 1.2, and 2.4.
If we consider first �
0 �
Pf� we see that not much changes
for different values of w as one would expect from examin-

ing Fig. 2�b�. The only real qualitative change is that for w
=d for w=0.6 and 2.4 the overlap is nonzero, albeit very
small, compared to the w=0 case where it is identically zero.
However, for w=1.2=d the overlap is zero, thus, we suppose
that the small but nonzero overlap for d=w is simply a finite-
size effect. For the overlap between the exact state and the
331 variational state we find that finite single-layer width has
two effects. First, it slightly lowers the maximum overlap
obtained �this is evident in Fig. 2� and reduces the area in d-t
phase space where the 331 state is a good ansatz. In essence,
for finite w the Pfaffian phase pushes out the 331 phase, at
least as far as wave-function overlap determines the phase.

B. Is the system one or two component?
Lowest Landau level

Due to the potential confusion between whether the pseu-

dospin operator �Ŝz�SAS or �Ŝx�layer controls the tunneling we
will report our results in terms of �NS−NA� /2, where NS and
NA are the expectation values of the total number of particles
in the symmetric S or antisymmetric A state, respectively.
This is the more precise variable since whether we are cal-

culating �Ŝz�SAS or �Ŝx�layer the answer is always equal to
�NS−NA� /2.

Our conclusion so far, based on overlap calculations, is
completely consistent with the calculated expectation value
of �NS−NA� /2 which is essentially the order parameter de-
scribing the one-component to two-component transition,
i.e., �NS−NA� /2�N /2 describes a one-component phase
since in that case N=NS, whereas �NS−NA� /2�0 describes a
two-component phase since in that case NS=NA=N /2. Note
that in our N=8 system the maximum and minimum value of
the pseudospin expectation value is 4 and 0, respectively.
Figures 3�a�–3�d� shows the calculated �NS−NA� /2 as a func-
tion of d and t for w=0, w=0.6, w=1.2, and w=2.4. First we
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FIG. 2. �Color online� Wave-function overlap between the exact
ground state �a� 
0 and 
Pf at strong tunneling t=0.2 and �b� 
331

at zero tunneling t=0 as a function of separation d and single-layer
well width w �where d�w� for the �=1 /2 lowest LL with N=8
electrons. White corresponds to an overlap of unity while black
corresponds to an overlap of zero. The dashed red line is the con-
dition w=d and for w�d the bilayer system is undefined, i.e., the
single-layer width cannot be larger than the layer separation.
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w=2.4.
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consider w=0 �Fig. 3�a��. For d=0 and t=0 the system is two
component and the system is SU�2� symmetric. Only a small
amount of tunneling is required to very quickly push the
system to be one component. As d is increased, more tunnel-
ing is required to make the system one component. Of
course, this can be readily understood physically: for non-
zero layer separation d the electrons in the symmetric state
pay a higher Coulomb energy price than electrons in the
antisymmetric state since 1 /r�1 /�r2+d2, for d�0.

For nonzero single-layer width �finite w� the general be-
havior outlined above does not change appreciably, cf. Figs.
3�b�–3�d�. The only real difference is that for increasing w,
less tunneling is required, at the same value of layer separa-
tion d, to make the system one component. That is, it is
easier to push the system into one-component behavior via
tunneling when w�0.

Comparing these results to our overlap results shown in
Fig. 1 we see that when the system is effectively two com-
ponent for weak tunneling the Halperin 331 state has a
higher overlap with the exact state than the Moore-Read
Pfaffian state. This is expected since the Pf state describes a
one-component state. On the other hand, when the system is
effectively one component for strong tunneling the one-
component Pf state has a higher overlap with the exact state

0 than 
331 does. Looking closer, one finds that when
�NS−NA� /2 is increased from zero toward �NS−NA� /2�2.5
the overlap with the exact state switches from being higher
with the two-component 331 state to the one-component Pf
state �this is true irrespective of w�. In other words, the two-
component description of the exact state provided by 
331
survives until nearly 60% more electrons are in the symmet-
ric state than the antisymmetric state, the two-component
331 state is surprisingly robust to tunneling that drives the
system toward one-component behavior.

C. Will the system display the FQHE?, lowest Landau level

Wave-function overlap and pseudospin are only two prop-
erties that elucidate the physics. Another property is the en-
ergy gap above the L=0 ground state in the excitation spec-
tra; a crucial characteristic that determines the
incompressibility or the robustness of the FQHE. In Figs.
4�a�–4�d� we show the energy gap, defined as the difference
between the first excited and ground-state energies at con-
stant N�, as a function of d and t for the �=1 /2 lowest LL
system for �a� w=0, �b� w=0.6, �c� w=1.2, and �d� w=2.4. It
is clear that for finite d and t there is a 1/2 FQHE with a
finite gap. At the SU�2� symmetric point the energy gap is
vanishingly small. Interestingly, the energy gap has a peak in
t-d space, a ridge along which the energy gap is maximum.
Generally, as w is increased the value of the energy gap
decreases as is expected since finite width of a single-
quantum well reduces the Coulomb energy by softening it.
For w=2.4, the maximum width considered, the energy gap
retains the basic qualitative structure as for the other widths,
however, its overall value is very small. Note as well that the
maximum energy gap ridge is approximately located at the
point in the d-t parameter space where the overlap between
the exact state crosses over from being larger with the Pfaff-

ian ansatz and the 331 ansatz �more on this below�, i.e., the
gap is maximum close to the transition line between 331 and
Pfaffian.

In Fig. 5 we project the energy gap onto the two-
dimensional t-d plane with the color coding indicating the
numerical FQHE gap strength on the same scale as in Fig. 4.
Note that the Coulomb interaction is undefined for d�w so
no results are obtained in that case. On this same plot we
draw with a black dashed line the line that separates the 331
phase from the Pfaffian phase. This phase boundary is deter-
mined by noting which state has a higher overlap with the
exact state 
0 in which region of parameter space, i.e., if
�
331 �
0� is larger than �
Pf �
0� then we say the exact
system is in the 331 phase and vice versa. Note that the
dashed line is only an operational phase boundary within our
calculation since all we know is that the 331 �Pf� has higher
�lower� overlap above �below� this line. We cannot rule out
the possibility that the in thermodynamic limit some other
state �including possibly a compressible state� besides the

331 or 
Pf dominates.

We show the approximate QPD for all four values of the
layer width parameter �a� w=0, �b� w=0.6, �c� w=1.2, and
�d� w=2.4. The zero �Fig. 5�a��, and the intermediate-width
�Fig. 5�b�� results are of physical relevance whereas the �un-
realistically� large width results �Figs. 5�c� and 5�d�� are pro-
vided here only for completeness �since this is the regime
where the Pf state dominates over the 331 state in the quan-
tum phase diagram�. We note that we are using the simplistic
ZDS model57 for describing the well-width effect, and
crudely speaking w=1 in the ZDS model corresponds
roughly to wQW�6, where wQW is the corresponding physi-
cal �i.e., effective single-layer� quantum-well width. For a
single WQW, where the effective bilayer is created by the
self-consistent potential of the electrons themselves,1,19,39,41

our w is typically much less than the total width W of the
WQW, very roughly speaking w�W /12, and d�W /2. As
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FIG. 4. �Color online� FQHE energy gap as a function of layer
separation d and tunneling amplitude t for the �=1 /2 lowest LL
system with N=8 electrons. We consider single-quantum-well
widths of �a� w=0, �b� w=0.6, �c� w=1.2, and �d� w=2.4. The
energy gap is also color coded such that black is zero gap and white
is maximum on a scale from 0 to 0.0425 in Coulomb energy units,
e2 / ��l�.
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emphasized above, we treat t, d, and w��d� as independent
tuning parameters.

In Fig. 5, we have put as discrete symbols all existing �
=1 /2 bilayer published FQHE experimental data �both for
double quantum-well systems and single wide quantum
wells� in the literature, extracting the relevant parameter val-
ues �i.e., d and t� from the experimental works.1,19,38,39,41

Because of the ambiguity and uncertainty in the definition of
w �i.e., how to precisely relate our theoretical w in the
Zhang-Das Sarma model to the experimental layer width in
real samples�, we have put the data points on all four QPDs
shown in Fig. 5 although the actual experimental width val-
ues correspond to only Figs. 5�a� and 5�b�. See Sec. VIII for
a detailed description of exactly how the experimental points
were determined.

Results shown in Fig. 5 bring out several important points
of physics not clearly appreciated earlier in spite of a great
deal of theoretical exact-diagonalization work on �=1 /2 bi-
layer FQHE: �i� it is obvious that large, or small, t and small,
or large, d, in general, lead to a decisive preference for the
existence of �=1 /2 Pf, or 331, FQHE. The fact that large t
values would preferentially lead to the Pf state over the 331
state is, of course, expected since the system becomes an
effective one-component system for large tunneling strength.
�ii� What is, however, not obvious, but apparent from the
QPDs shown in Fig. 5, is that the FQHE gap �given in color
coding in the figures� is maximum near the phase boundary
between 331 and Pf.

�iii� Another nonobvious result is the persistence of the
331 state for very large �essentially arbitrarily large!� values
of the tunneling strength t as long as the layer separation d is
also large, thus having a large t by itself, as achieved in the
Luhman et al. experiment,1 is not enough to realize the
single-layer �=1 /2 Pf FQHE, one must also have a rela-
tively small value of layer separation d so that one is below
the phase boundary �dashed line� in Fig. 5. The explanation
for the Luhman experimental �=1 /2 FQHE being a 331 sate,
as can be seen in Fig. 5, is indeed the fact that both t and d
are large in these samples making 331 a good variational
state.

�iv� An important aspect of Fig. 5 is that the Pf FQHE gap
tends to be very small, this is particularly true for larger
values of w, where the Pf overlap is large. This implies, as
emphasized by Storni et al.,22 that the observation of a �
=1 /2 Pf state is unlikely since the activation gap would be
extremely �perhaps even vanishingly� small.

�v� For larger values of w �and large t�, our calculated
QPD is dominated by the Pf state, particularly for the unre-
alistically large width w=2.4 �corresponding to wQW�14!�
where all the experimental d and t values fall in the Pf re-
gime of the phase diagram. We emphasize, however, that this
Pf-dominated large-w �and large-t� regime will be difficult to
access experimentally since the FQHE gap would be likely
extremely small as in Fig. 5. Our results however cannot
decisively rule out the possibility of a �=1 /2 Pfaffian state
in the strong-tunneling and small separation regime.

We now discuss the published experimental results in
light of our theoretical QPD. First, we note that most of the
existing experimental points fall on the 331 side of the phase
diagram which is consistent with our QPD in Fig. 5. In par-
ticular, only samples on the 331 side of the QPD with rea-
sonably large FQH gaps, i.e., the data points close to the
phase boundary, exhibit experimental FQHE. By contrast,
the one data point �solid triangle in Figs. 5�a� and 5�b�� on
the Pf side of the phase boundary does not manifest any
observable FQHE in spite of its location being in a regime of
reasonable FQHE excitation gap according to our phase dia-
gram. This is consistent with the finding of Storni et al.22 that
the �=1 /2 FQHE gap in a single-layer system is likely to be
vanishingly small in the thermodynamic limit. It is, there-
fore, possible that the Pf regime in our QPD has a much
smaller excitation gap than what we obtain on the basis of
our N=8 particle diagonalization calculation. We refer to
Storni et al.22 for more details on the theoretical status of the
single-layer LLL �=1 /2 FQHE.

For a more detailed view of the �=1 /2 bilayer FQHE, we
show in Figs. 6�a�–6�d� and 7�a�–7�d�, respectively, our cal-
culated FQHE gap as a function of t �for a few fixed d
values� and as a function of d �for a few fixed t values�. Note
that similar results were obtained by Nomura and Yoshioka
in Ref. 18, however, they only considered the energy gap
versus tunneling for two values of separation d and fixed w
=3.8 for a N=6 electron system, which is aliased with a
possible FQHE at �=2 /3 and therefore suspect. In each fig-
ure, we also depict the line separating the 331 �smaller
t/larger d� and the Pf �larger t/smaller d� regimes in the phase
diagram. The qualitatively interesting point is, of course, the
nonmonotonicity in the FQHE gap as a function of t or d
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FIG. 5. �Color online� Quantum phase diagram �QPD� and
FQHE gap �color coded� versus layer separation d and tunneling
strength t for widths �a� w=0, �b� w=0.6, �c� w=1.2, and �d� w
=2.4. For the QPD, the 331 and Pf phases �as discussed in the text�
are separated by a dashed black line and labeled appropriately. The
FQHE gap is given as a contour plot with color coding given by the
color bar from dark to light, i.e., white being a largest value of
0.0425 and black being value of 0. The asterisks, triangles, circles,
and squares correspond to the different experiments in Refs. 38, 39,
41, 19, and 1, respectively. Only experimental points showing
FQHE are within the large solid circles in �a� with the lower smaller
circles and upper larger circles indicating experiments in double-
quantum-well structures and WQW structures, respectively. We
note that the single triangle on the Pf side of the QPD does not
manifest any experimental FQHE indicating that the theoretical gap
may be overestimated for the Pf state.
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with a maximum close �but always on the 331 side� to the
phase boundary. The nonmonotonicity in the FQHE gap as a
function of t �but not d� was earlier pointed out but our
finding that the peak lies always on the 331 side of the phase
boundary is a new result. We emphasize that this result is
strong evidence that the 331 phase is the dominant FQHE
phase in �=1 /2 systems. We believe that the only chance of
observing the �=1 /2 Pf FQHE is to look on the Pf side of
the phase boundary at fairly large values of d and t. This is in
sharp contrast to the SLL �=5 /2 bilayer FQHE where we
show in Sec. V that there are two sharp ridges far away from
each other in the d-t space corresponding to the �=5 /2 Pf
and 331 bilayer phases.62

We conclude this section by commenting on the nature of
the QPT between the 331 and the Pf phase in the d-t space.

Our calculated QPD implies a continuous QPT from the
strong-pairing 331 to the weak-pairing Pf state with increas-
ing t and/or decreasing d as predicted by Read and Green.34

�Note this has also been very recently discussed by Dimov et
al.63� In fact, our finite-size diagonalization based QPD of
Fig. 5 is topologically equivalent to the phase diagram pre-
dicted by Read and Green �Fig. 1 of Ref. 34�. We emphasize,
however, that we cannot distinguish a quantum phase transi-
tion from a crossover because of the limitations of finite-size
calculations. It is also possible that a different phase, e.g., a
compressible composite fermion Fermi-liquid phase, has
lower energy and intervenes between the 331 and Pf phases
so that the system goes from 331 to Pf �or vice versa�
through two first-order transitions. What we have shown here
is that if the �=1 /2 bilayer Pf phase exists at all, it would
manifest most strongly in very wide samples and close to the
phase boundary with the 331 phase with an extremely small
FQHE excitation gap. We have also shown, through an ex-
plicit comparison with our t-d-w phase diagram �Fig. 5� that
all published �=1 /2 FQHE data1,19,38,39,41 are consistent with
the existence of only the 331 phase in the LLL. Our work
does not rule out the possibility of a weak Pf FQHE at �
=1 /2 for large values of tunneling.

V. SECOND LANDAU LEVEL

We now consider the same set of questions we asked re-
garding the physics of FQHE bilayers in the �=1 /2 lowest
LL �Sec. IV� about the bilayer FQHE systems in the SLL.
Our approach here is to theoretically consider a single-layer
FQHE at a half-filled SLL system, i.e., �=2+1 /2=5 /2
where the first two lowest Landau levels of spin up and spin
down are completely occupied and inert. Thus, the half-filled
SLL interacting electrons are projected into the LLL using
the appropriate SLL Haldane pseudopotentials.64 The exact
nature of this procedure has been given many times in many
places in great detail and will not be reiterated here �see Ref.
30 for a good description�. To consider a SLL bilayer system
we then allow the single layer to become a bilayer by reduc-
ing the tunneling and/or increasing the layer separation d.
There are actually quite subtle points in defining this proce-
dure in the SLL and they are discussed below in Sec. V D in
detail. However, our procedure is completely well-defined
theoretically, and is a direct analog of the �=1 /2 LL calcu-
lation in the SLL.

A. What is the physics?, second Landau level

The calculated wave-function overlap between the exact
ground state 
0 and the two appropriate candidate varia-
tional wave functions �
Pf and 
331� as a function of dis-
tance d and tunneling energy t is shown in Fig. 8 for single-
layer widths of w=0, w=0.6, w=1.2, and w=2.4. First we
focus on the situation with zero width w=0 �Fig. 8�a�� and
concentrate on the overlap with 
Pf. In the limit of zero
tunneling and zero d the overlap with 
Pf is small, approxi-
mately 0.5 �unclear from the figure�. However, only weak
tunneling is required to produce a state with a sizable overlap
of approximately �0.96 and as tunneling increases this over-
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FIG. 6. �Color online� FQHE energy gap versus tunneling
strength t for several values of layer separation d for �a� w=0, �b�
w=0.6, �c� w=1.2, and �d� w=2.4. A dashed vertical line of the
same color corresponds to the boundary between the Pfaffian phase
�right of the line� and the 331 phase �left of the line�.
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FIG. 7. �Color online� FQHE energy gap versus layer separation
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phase boundary between the Pfaffian phase �left of the line� and the
331 phase �right of the line�.
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lap remains large and approximately constant. For d�0, in
the weak-tunneling limit, the overlap with 
Pf decreases
drastically. Adding moderate to strong tunneling we obtain a
sizable overlap, decreasing gently in the large d limit. This
shows that the strong-tunneling �one-component� regime is
well described by the Pf state. This strong-tunneling Pf re-
gime appears to be robust.

Next we consider the overlap between 
0 and 
331. In
the zero tunneling limit, as a function of d, the overlap starts
small, increases to a moderate maximum of �0.80 at d�1
before achieving an essentially constant value of �0.56. For
d�4 the overlap remains relatively constant and slowly de-
creases as the tunneling is increased �in fact, there is a slight
increase in the overlap to �0.6 for a region of positive d
�4 and 0.1� t�0.15�. Thus, the weak-tunneling �two-
component� regime is well described by 
331.

Similar to what we did in the LLL, we consider the effects
of finite width, knowing that it may enhance the overlap.25,47

In Figs. 9�a� and 9�b� we show �
0 �
331� and �
0 �
Pf�,
respectively, versus layer separation d and single-layer width
w for small tunneling t=0 and large tunneling t=0.2. In the
zero tunneling limit �Fig. 9�a�� we see that the overlap can be
increased significantly ��0.94� by using d�1 and w�d.
The overlap between the exact state and the 331 state re-
mains high with increasing width as long as the layer sepa-
ration d�1, this compares with the LLL case where the
overlap is maximum for a larger separation near 1.8. How-
ever, the general feature that the maximum does not change
appreciably with increasing w is consistent with the LLL
results. The main difference is the overlap with 331 is lower,
and increasing w and d eventually pushes the overlap to zero.

For the strong-tunneling limit �t=0.2�, in the case of 
Pf
�Fig. 2�b��, our results are consistent with the single-layer
finite-thickness results �cf. Refs. 25 and 47�. Compared to
the LLL, however, the overlap increases to a maximum for a
finite w and that behavior continues to hold when d is in-

creased. Eventually, large single-layer width causes the over-
lap with the Pfaffian state to decrease for any d significantly
larger than w. Thus, finite-layer width enhances the overlap
with both 331 and Pf states in their regimes of phase space.

By examining Figs. 8�b�–8�d� we see results qualitatively
similar to the LLL results shown in Fig. 1. The real differ-
ence here is that the overlap between the exact state and the
Pf state, in the region of phase space where it is better than
the 331 state, is higher in the SLL than it is in the LLL. This
is expected behavior when one considers the single-layer
results25,47 where the Pf is known to be an excellent candi-
date for the �=5 /2 single-layer FQHE. The other difference
complimentary to the Pfaffian behavior is that the overlap
between the exact state and the 331 state is lower in the SLL
than it is in the LLL. In fact, for large layer width w=2.4
�Fig. 8�d�� the overlap with the 331 is quite low and it would
be unreasonable to assume that the exact state is adequately
described by the Halperin 331 state. The Pfaffian overlap is
also lower for w=2.4 in the SLL than it is in the LLL �some-
what surprisingly�. In fact, after investigating the FQHE en-
ergy gap for w=2.4 �below in Sec. V C� it is clear that the
bilayer SLL system most likely would not exhibit any FQHE
for such large widths. Again, similar to the LLL results �Figs.
1�b�–1�d��, we note that for increasing w, the region in phase
space described by the Pf phase increases at the expense of
the 331 state.

B. Is the system one or two component?, second Landau level

Figure 10 shows the calculated value of �NS−NA� /2 as a
function of d and t with �a� w=0, �b� w=0.6, �c� w=1.2, and
w=2.4 and, as before, our overlap based conclusions are
consistent with the value of �NS−NA� /2. It is difficult to
clearly tell the difference between the results in the SLL
compared to those in the LLL. The slight difference between
the two is that in the large d limit slightly more tunneling is
required to drive the system to the one-component regime
than in the LLL case. Further, in the strong-tunneling limit,
the SLL system’s one-component character is more robust to
increasing layer separation d, but only just. Again, similar to
the LLL, we find that when �NS−NA� /2�2.5 the overlap
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FIG. 8. �Color online� Wave-function overlap between the exact
ground state 
0 and the Pf state 
Pf �blue �dark gray�� and 331
state 
331 �yellow �light gray�� as a function of distance d and
tunneling amplitude t for the half-filled second LL with N=8 elec-
trons and width �a� w=0, �b� w=0.6, �c� w=1.2, and �d� w=2.4
�d�w necessarily�.
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with the exact ground state switches from being either higher
with the Pf state or the 331 state.

C. Will the system display the FQHE?, second Landau level

In Figs. 11�a�–11�d� we show the FQHE energy gap as a
function of d and t for the SLL system for �a� w=0, �b� w
=0.6, �c� w=1.2, and �d� w=2.4. Similar to the LLL, it clear
that for finite d and t, a 5/2 FQHE with a finite gap �being
either 331 or Pf� exists in a realistic parameter regime. There
is a clear qualitative difference between the lowest and sec-
ond LLs, however. In the SLL, the largest FQHE energy gap
is obtained in the zero d limit for finite tunneling. That is, in
the region where the Moore-Read Pfaffian ansatz is the better

description of the exact ground state, the energy gap is larg-
est. With an energy gap nearly as large is the “ridge” region
identified in our LLL results, again the ridge lies in the re-
gion of d-t phase space corresponding to the “quantum phase
transition” between the Pf phase and 331 phase. Finite
single-layer width w �Figs. 11�b�–11�d�� decreases the over-
all energy gap and moves the ridge area to weaker tunneling.
Note that for the largest width considered �w=2.4� the en-
ergy gap is very small and the ridge has essentially become a
“valley” and the overall energy gap is very small.

We now discuss the approximate quantum phase diagram
for the bilayer system for the SLL as shown in Fig. 12 for
single-layer widths �a� w=0, �b� w=0.6, �c� w=1.2, and �d�
w=2.4. This QPD is calculated the same way as it is for the
LLL �cf. Fig. 5�, identifying the 331 and Pf phases as the
regions in the parameter space where the overlap with 
0 is
larger �Fig. 8�. In general, the two-component 331 phase �the
upper left region� has a weaker SLL FQHE than that of the
one-component Pf �the lower right region�. Figure 12, which
is an important prediction of our work, shows that in the SLL
bilayer system, both the 331 and Pf states should be visible,
and in a realistic finite thickness system �Figs. 12�b� and
12�c��, the FQHE gap would become very small, perhaps
even zero, in between the two phases.

Again, we ask the natural question whether our numeri-
cally obtained transition from the large-d �small-t� region to
the small-d �large-t� region is a quantum phase transition or a
crossover. Of course a finite-size numerical study cannot de-
finitively answer this question. Our results, however, are con-
sistent with the findings34 of Read and Green, and we believe
that there would be a QPT between 331 and Pf phases in the
second LL since a crossover between topologically trivial
�331� and nontrivial �Pf� phases is difficult to contemplate.
We also note that for the w=0 case, the quantum phase tran-
sition line seems to terminate at d=0= t for the SLL and for
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FIG. 10. �Color online� �NS−NA� /2 as a function of distance d
and tunneling amplitude t for the half-filled second Landau level,
N=8 electrons, and �a� w=0, �b� w=0.6, �c� w=1.2, and �d� w
=2.4.
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FIG. 11. �Color online� FQHE energy gap as a function of layer
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the second LL for widths �a� w=0, �b� w=0.6, �c� w=1.2, and �d�
w=2.4. For the QPD, the 331 and Pf phases are labeled appropri-
ately and the gap is given as a contour plot with color coding given
by the color bar from dark to light, i.e., white being a largest value
of 0.035 and black being value of 0.

QUANTUM HALL PHASE DIAGRAM OF HALF-FILLED… PHYSICAL REVIEW B 81, 165304 �2010�

165304-11



d=0 and finite tunneling t in the LLL, i.e., some finite t is
required to push the system into the Pf phase. Thus, our SLL
results are more similar to the QPD of Read and Green34

where a multicritical point exists separating the 331 Abelian
phase from the non-Abelian Pf phase when t=0. It is perhaps
understandable that our SLL results would more closely re-
semble that of Read and Green since they were modeling a
1/2-filled bilayer FQHE state as px+ ipy superconductor of
composite fermions which is thought to be the appropriate
description for the 1/2-filled FQHE in the SLL, not necessar-
ily in the LLL. Further, in our SLL QPD, the Pf phase is
quite strong, as indicated by the FQHE energy gap, along the
d=0 and finite t line, whereas in the LLL, the gap is quite
small along that line. Of course, the parameters in Read and
Green’s analysis are not directly related to our parameters,
they have a chemical potential � in an effective pairing
Hamiltonian while we have layer separation d. Furthermore,
our model is SU�2� symmetric at the d=0= t point while their
model has explicitly broken SU�2�. More work will be
needed to understand completely the similarities of our ap-
proach and that of Read and Green definitively but the fact
that the topology of our numerically calculated phase dia-
gram of Fig. 12 strongly resembles that of the phase diagram
discussed by Read and Green is highly suggestive.

In Figs. 13�a�–13�d� and 14�a�–14�d� we provide a de-
tailed view of the SLL FQHE bilayer system with the FQHE
energy gap given as a function of tunneling energy t for
several values of the layer separation d and the energy gap as
a function of layer separation for several values of tunneling
energy, respectively. The FQHE energy gap as a function of
tunneling is similar qualitatively to the results in the LLL.
Namely, the gap rises to a peak value and then falls off. Of
course, for w=2.4 �Fig. 13�d�� the FQHE gap structure is
different than all other cases, lowest or second LL, in that the
peak has turned into a valley.

In Fig. 14 we find that the behavior of the FQHE energy
gap as a function of layer separation d for constant tunneling

energy t is qualitatively different from the behavior in the
LLL. The difference is that in the SLL the largest value of
the energy gap is for d=0 and for increasing d the energy
gap decreases slightly to a minimum �for t�0.02� and then
rises again to a peak. For increasing tunneling energy, the
peak becomes more rounded. This behavior is qualitatively
different from the lowest LL in that there are two peaks in
the energy gap versus d at constant t instead of one, note that
for w=0 and t�0.02 there is only a single peak not unlike
the lowest LL results. For zero layer width �w=0�, the phase
boundary between the one-component Pfaffian phase �to the
left of the boundary line� and two-component 331 phase �to
the right of the boundary� is to the left of the single peak in
the energy gap for t�0.02, moves to slightly right of the
second energy gap peak for 0.02� t�0.1, and then finally
moves back to being left of the second energy gap peak. For
w=0.6 in Fig. 14�b� there are two energy gap peaks and the
phase boundary is slightly to the right of the peak for t
�0.1 for w=0.6. For t�0.1 the phase boundary moves to
the left of the second peak. For w=1.2 in Fig. 14�c� �except
for t=0� the phase boundary is always to the left of the
second energy gap peak. Lastly, we show results for w=2.4
in Fig. 14�d� for sake of completeness but it is clear that this
case is most likely not a FQHE for any parameter values
other than for very small d and large t.

D. Bilayer FQHE in higher Landau levels

There is a conceptual difficulty that we postponed when
discussing bilayer FQHE in the SLL which exists when dis-
cussing any bilayer FQHE in higher LLs. In fact, we care-
fully setup the initial SLL bilayer FQHE problem as starting
with a single-layer, or one-component, system in the SLL
�presumably the 1/2-filled SLL at �=5 /2� and then system-
atically driving the system into a bilayer by the tuning of
model parameters. However, in our calculation, the electrons
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FIG. 13. �Color online� FQHE energy gap versus tunneling
strength t for a few values of layer separation d for �a� w=0, �b�
w=0.6, �c� w=1.2, and �d� w=2.4. A dashed vertical line of the
same color corresponds to the boundary between the Pfaffian phase
�right of the line� and the 331 phase �left of the line�.
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FIG. 14. �Color online� FQHE energy gap versus layer separa-
tion d for a few values of tunneling strength t for �a� w=0, �b� w
=0.6, �c� w=1.2, and �d� w=2.4. A dashed vertical line of the same
color corresponds to the boundary between the Pfaffian phase �left
of the line� and the 331 phase �right of the line�.
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fractionally filling the SLL remain in the SLL throughout the
procedure of tuning the system from one to two component.
A bilayer FQHE at total filling factor �=5 /2 would consist
of two layers at single-layer filling factor �̃= �1 /2��5 /2�
=5 /4, see Fig. 15. This is compared to the LLL where the
half-filled bilayer FQHE consists of �=1 /4+1 /4=1 /2, i.e.,
two layers at �̃=1 /4, which when combined yield total �
=1 /2=2�̃ �Fig. 15�b��.

The case of spinless electrons �we consider the spin-full
situation below� is depicted in Fig. 16. In the one-component
limit, electrons in the half-filled SLL have total filling factor
�=1+1 /2=3 /2, the LLL is completely filled and considered
inert. In the two-component limit, when each of the two
quantum-well layers have been taken far apart from one an-
other, the filling factor in each layer �assuming the electrons
to have equal densities in each layer� will be �̃=3 /4. Thus,
the electrons in individual layers are in the lowest LL, not
the SLL. The key conceptual difficulty is that we started with
a one-component system at total �=1 /2 in the second LL
and ended up splitting it into a bilayer system of each layer
at �̃=3 /4 in the lowest LL, i.e., the electron LL index
changed!

If one were to study bilayer FQHE in the SLL completely
rigorously �necessarily numerically� one would have to con-
sider, even for spinless electrons, a system consisting of elec-
trons with a layer degree of freedom �pseudospin� and at
least two LL degrees of freedom. Furthermore, one would
not necessarily be able to treat the electrons in the LLL �the
1 in the 1+1 /2=3 /2� as inert. For the system we studied
with N=8 electrons half filling the second LL, one would
need to fully consider N=20 interacting electrons with a
layer degree of freedom and consider at least two LLs.
Hence, the Hilbert space dimension would be extremely
large, on the order of 1011 states. A Hilbert space dimension
of 1011 is out of reach for any numerical procedure for any
computer.

The experimental reality makes the situation more com-
plicated due to the inclusion of spin. Half-filled FQHE in
single layer, presumably, one-component systems has only
been observed in the SLL, i.e., �=5 /2, which is modeled
successfully by treating the completely filled spin-up and
spin-down LLLs as inert. Once the system is made into a
bilayer we are left with, in the extreme layer separation limit,
two systems at 5 /4=1+1 /4 filling. When the layers are very
far apart �large d and necessarily weak t� it would be ex-
pected that the structure of the 5/4-filled systems would be
identical �since they would not interact� and the spin-up LLL
would be filled and inert and the remaining electrons would
fill the spin-down LLL up to 1/4 filling. Such a situation is
depicted in Fig. 17�b�. If, on the other hand, the system is
barely becoming two component, perhaps the simplest pos-
sibility is that the two �̃=5 /4 layers will consist of a com-
pletely filled spin-up LLL in one layer and spin-down LL in
the other layer �see Fig. 17�a��. However, when the two lay-
ers are close enough that they begin to interact with one
another, even without any tunneling, the situation quickly
becomes complicated �as discussed below�. It is not clear if
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FIG. 15. �Color online� Schematic depicting the FQHE system
at total filling factor �a� �=5 /2 and �b� �=1 /2 being broken up into
a bilayer system with each separate layer being at �a� �̃=5 /4 and �b�
�̃=1 /4. The colored shaded section represents a density of electrons
filling up a quantum well.
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FIG. 16. �Color online� Schematic depicting a spinless FQHE
system at total filling factor �=3 /2 becoming a bilayer spinless
system with each layer at �̃=3 /4. The fraction of the density frac-
tionally filling a LL is colored blue �dark gray� while an inert LL �in
this case the lowest� is colored red �light gray�.
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FIG. 17. �Color online� Schematic depicting two possible sce-
narios for the spin-full FQHE system at total filling factor �=5 /2
being broken up into a bilayer system with each separate layer
being at �̃=5 /4. In �a� we consider the small d and strong t limit
where the lowest spin-up and spin-down Landau levels are com-
pletely occupied leaving a 1/4-filled spin-up Landau level in each
layer. In �b� we depict the large d and weak-tunneling t limit with
the lowest spin-up LLL being filled in each layer leaving a 1/4-filled
lowest Landau level of spin-down electrons in each layer. The no-
tation is such that ���,n� corresponds to the filling factor � for elec-
trons with spin-� electrons with orbital Landau level index n, i.e.,
1�↑,0� corresponds to filling factor 1 of spin-↑ electrons with LLL
index 0.
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any of the electrons in a bilayer FQHE at total �=5 /2 can be
considered inert and one might need to consider an interact-
ing electron system where the electrons carry spin, pseu-
dospin, and two, or possibly three, LLs indices, making such
a problem intractable.

We note that considering each layer to have �̃=2+1 /4
filling so that, in analogy with the LLL bilayer situation, we
have 1/4 filling in each SLL layer, does not resolve the am-
biguity since this produces a total filling of �= �2+1 /4�+ �2
+1 /4�=9 /2, taking us to the half-filled third orbital LL!
Similarly, considering each layer to have �=1+1 /4 filling
leads to a total bilayer filling of �=5 /2 but takes us from the
LLL to the SLL in going from a one layer to a bilayer sys-
tem. The conundrum here is not theoretical but is about how
one connects the theoretical results with the experimental
bilayer 5/2 system. We emphasize that no such ambiguity
arises for the �=1 /2=1 /4+1 /4 bilayer system where all of
the physics occurs in the LLL, both for individual layers and
for the total bilayer. Also, there is no ambiguity in the strong-
tunneling regime where the bilayer effectively acts as a
single-layer system with �=5 /2 as in a single 2D system.

For our fully spin-polarized model, however, there is an
easy conceptual �and operational� way out of this ambiguity
for the bilayer �=5 /2 system. Since we assume the whole
system �in both layers and in both orbital Landau levels� to
have the same spin, the system is effectively spinless �which
is equivalent to assuming the Zeeman energy to be much
larger than the cyclotron energy�. In this spinless �or spin-
polarized� situation, each orbital LL by definition comes with
just one spin index. Therefore, the �=5 /2 balanced bilayer
system is equivalent to a �̃= �1 /2��5 /2�=5 /4=1+1 /4 filling
in each layer, where the completely filled inert level in each
layer is simply the LLL, and the 1/4-filled level in each layer
is in the SLL. Since the LLL is inert, the incompressible
FQH states form entirely in the SLL, and we can construct a
Halperin 331 SLL state with �=1 /2 from the two 1/4-filled
SLL states in each individual layer in a manner similar to
that for the �=1 /2 LLL bilayer state. We emphasize that this
simplicity is lost if we include both spin and layer indices on
an equal footing since including the two spin indices �up and
down� and two layer indices �right and left� lead to an im-
mediate problem on how to assign individual �̃ values which,
when combined into the total �=2�̃, lead to a bilayer SLL
�=5 /2 FQHE with both the total bilayer �i.e., �� and the
individual layer �i.e., �̃=� /2� filling factor being in the SLL.
�As emphasized already, the situation with two layers, two
spins, and two orbital LLs is ambiguous unless the numerical
diagonalization takes exactly into account the full dynamics
of all three two-level quantum indices which is impossible to
do for any computer.�

We mention that earlier theoretical work �alluded to
above� by Zheng et al.,65 Das Sarma et al.,66,67 Demler et
al.,68 and Brey et al.69 did take into account the dynamical
interplay between layer and spin indices with the conclusion
that there should be a novel quantum canted antiferromag-
netic phase in bilayers for situations where each individual
layer state has a gap in the spectrum �e.g., �=1+1 or 1 /3
+1 /3 or 1+1 /3+1+1 /3�. For the case we are considering in
the current work, i.e., �=5 /2 and �̃=� /2=5 /4, there is not

necessarily a gap in the individual layer spectrum, and there-
fore a canted phase is not expected.

VI. CONCLUSIONS

Our results concerning the �=1 /2 LLL FQHE bilayer
system point to strong evidence that the dominant FQH
phase is the two-component Abelian Halperin 331 phase. We
believe that the only chance of observing the �=1 /2 non-
Abelian Moore-Read Pfaffian FQHE is to look on the Pf side
of the phase boundary �Fig. 5� at fairly large values of d and
t. This contrasts the SLL bilayer situation where there are
two sharp ridges far away from each other in the d-t space
corresponding to the Pf and 331 phases. We note that for
unrealistically large single-layer width w the Pf phase domi-
nates the 331 phase but the FQHE gap is extremely small. If
the Pf phase exists at all, it would manifest most strongly in
wide samples and close to the phase boundary with the 331
phase.

In addition, we predict the existence of both the two-
component 331 Abelian �at intermediate to large d and small
t� and the one-component Pfaffian non-Abelian �at small d
and intermediate to large t� �=5 /2 SLL FQHE phase in bi-
layer structures. The observation of these two topologically
distinct phases, one �Pf� stabilized by large interlayer tunnel-
ing and the other �331� stabilized by large interlayer separa-
tion would be a spectacular verification of the theoretical
expectation34 that bilayer structures allow quantum phase
transitions between topologically trivial and nontrivial paired
even-denominator incompressible FQHE states. The direct
experimental observation of our predicted “two distinct
branches” of two strong SLL FQHE regimes in bilayer struc-
tures, as shown in Figs. 12�a�–12�c�, with the FQHE gap
being largest along the two ridges in the phase diagram as d
and t are varied, will be compelling evidence for the exis-
tence of the �=5 /2 non-Abelian Pf state.

Note that for small d and t, Pf and 331 phases are con-
tinuously connected, indicating the possible existence of a
quantum phase transition. We cannot, of course, dismiss a
crossover due to the limitations of finite-size calculations,
but it is difficult to contemplate how an Abelian and non-
Abelian phase could continuously go into each other without
a quantum phase transition.

Besides our exact-diagonalization results for the bilayer
�=1 /2 and 5/2 FQHE, we have raised an important concep-
tual issue involving the existence of Halperin-type bilayer
FQHE states in higher �i.e., beyond the lowest� Landau lev-
els. In particular, the fact that two well-separated distinct
layers have individual filling factors � /2, which necessarily
lie in a lower orbital LL, make it tricky to define a composite
bilayer Halperin wave function for � which is in a higher LL.
�This problem obviously does not arise in the LLL.� It is
conceivable that any theoretical study of bilayer FQHE states
in higher LLs must necessarily include the full dynamics
involving layer, orbital LL, and spin degrees of freedom.
This is an almost impossible theoretical challenge and we
hope that our work will motivate experimental activity in
bilayer structures at total filling factor 5/2 in order to explore
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the possible difference between the physics of bilayer �
=1 /2 and �=5 /2 systems.
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APPENDIX: IDENTIFYING THE EXPERIMENTAL
POINTS IN THE �=1 Õ2 BILAYER FQHE QUANTUM

PHASE DIAGRAM

We briefly describe our procedure for identifying the ex-
perimental data points in our calculated �=1 /2 bilayer
FQHE quantum phase diagram �Fig. 5�. In other words, we
explain how we extracted the parameter values t �tunneling
energy�, d �layer separation�, and w �layer width� for each
experimental sample point shown in Fig. 5.

The tunneling energy t is connected directly to the
symmetric-antisymmetric gap �SAS= t in our model and
therefore we simply use the quoted value of t �or �SAS� from
the relevant experimental paper. The layer separation d ap-
pears in our interlayer Coulomb interaction as Vinter
=e2 / ���r2+d2�. For a true bilayer system the definition of d
is obvious �the well-center to well-center distance between
the two quantum wells�, and we use that value for d from the
experimental publications �see Fig. 18�a��. For a wide single-
well system, where the effective bilayer arises as a direct
result of the self-consistent density profile in the system, we
choose d as the distance between the two peaks in the calcu-
lated carrier-density profile for the corresponding wide well
sample �see Fig. 18�b��. These self-consistent density profiles
are given in each experimental paper for each sample we
show in Fig. 5. This procedure is, of course, imperfect, for
example, the density profiles could be different from the cal-
culated zero-field local-density approximation �LDA� results
since the systems is in the strong field FQHE regime. We do

not, however, believe that this is a serious issue since the 2D
dynamics of the electrons leading to FQHE is separable from
the calculated density profile in the z direction transverse to
the 2D plane. In any case, the value of d, as given by the
calculated LDA density profile, is the best one can do.

The most problematic parameter for our model is the fi-
nite width parameter w which, in the Zhang-Das Sarma
model �Ref. 57�, does not correspond at all to the physical
layer width. This is why we have shown the experimental
points on all four width values in Fig. 5. It is known from
earlier work25,27,70–74 that the Zhang-Das Sarma parameter w
has the following, very approximate, correspondence with
the quantum-well width parameter wQW: w�

wQW

6 . Given that
a balanced, symmetric, wide-quantum-well structure with a
total width of W has wQW=W /2 for each individual layer, we
conclude wZDS�wQW /12. This is, however, a very qualita-
tive and crude estimate. Because of all the approximations
involved in our depiction of the experimental data, points in
Fig. 5 should be taken as a qualitative comparison, rather
than a quantitative one. In Table I we provide the values for
t, d, and w we get from individual experimental papers
whose data points show up in Fig. 5

Lastly, we schematically show in Fig. 18 how d and w in
our model correspond to those in the experimental sample.
The tunneling energy t corresponds directly to the
symmetric-antisymmetric splitting and the density profile in
the wide well is obtained from LDA calculations for the
experimental samples. Figure 18�a� corresponds to double
quantum-well structure and typical density profile in the ex-
periments by Eisenstein et al.38 and Fig. 18�b� matches the
single wide-quantum-well structure and typical density pro-
file in experiments by Suen et al.,39,41 Luhman et al.,1 and
Shabani et al.24

TABLE I. Values of layer separation d, quantum-well width w,
and tunneling energy t in units of magnetic length l and Coulomb
energy e2 / ��l�, respectively, taken from Refs. 1, 38, 39, 41, and 19
as described in Sec. VIII.

Experiment d / l t / �e2 / ��l�� w / l

Luhman et al., �squares�, Ref. 1 5.3 0.13 0.4

6.9 0.07 0.3

Eisenstein et al., �asterisks�, Ref. 38 2.4 0.01 0.3

2.7 0.01 0.3

3.6 0.01 0.3

Suen et al., �triangles�, Refs. 39 and 41 5.3 0.08 0.4

4.8 0.09 0.4

3.9 0.14 0.4

Shabani et al., �circles�, Ref. 19 5.9 0.11 0.25

6.0 0.13 0.25

d

w w

( )n z ( )n z

12w~W

d

(a) (b)

FIG. 18. �Color online� Schematic depicting the two bilayer
structures considered in this work. �a� shows a double-quantum-
well structure along with a generic density profile in the z direction
n�z� �blue dashed line� for experiments such as Ref. 38 while �b�
shows a single wide-quantum-well structure and generic density
profile �blue dashed line� typical of experiments such as Ref. 39.
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